200 research outputs found

    Bis[ÎŒ-1,2-bis­(1H-imidazol-1-ylmeth­yl)benzene-Îș2 N 3:N 3â€Č]disilver(I) 3-carboxyl­ato-4-hydroxy­benzene­sulfonate methanol solvate trihydrate

    Get PDF
    In the title compound, [Ag2(C14H14N4)2](C7H4O6S)·CH3OH·3H2O, the complex dication has a binuclear structure in which each AgI ion is two-coordinated in a slightly distorted linear coordination geometry. The two AgI atoms are bridged by two 1,2-bis­[(1H-imidazol-1-yl)meth­yl]benzene (IBI) ligands, forming a 22-membered ring. In the dication, π–π inter­actions are observed between the imidazole rings with centroid–centroid distances of 3.472 (3) and 3.636 (3) Å. In the crystal, the uncoordinated water mol­ecules, anions and methanol solvent mol­ecules are linked into chains along the b axis by O—H⋯O hydrogen bonds. In addition, π–π inter­actions are observed between the benzene rings of the IBI ligands, with a centroid–centroid distance of 3.776 (2) Å. The sulfonate group is disordered over two orientations with occupancies of 0.676 (12) and 0.324 (12)

    Moving Object Detection in Dynamic Background

    Get PDF
    Abstract: A new method of detecting moving object in dynamic background is proposed in this paper. At first, an adaptive threshold Harris algorithm is proposed in this paper to extract feature points, then, SIFT algorithm is used to describe these extracted feature points. The similarity function is used to match feature points and RANSAC algorithm is used to eliminate the pseudo matches. According to the correct matches, we get the affine transformation matrix which used to compensate the motion of background caused by camera motion, and update the dynamic background with the background model. Finally, the moving object can be detected by background subtraction method. Experimental results show that the method presented in this paper improves the accuracy of feature point extraction and detects moving target in dynamic background accurately

    USING EXPERIMENTAL PLANNING TO OPTIMIZE THE HYDROLYSIS OF SUGAR CANE BAGASSE INTO FERMENTABLE SUGARS FOR BIOETHANOL PRODUCTION BY FUNGAL ENZYME MIXTURE

    Get PDF
    In this study, the unpretreated sugar cane bagasse was milled to a particle size of 0.5 – 1 mm and be used as material for bioconversion into fermentable sugars by using an enzyme cocktail acted synergistically. Experimental planning was used to optimize the enzyme conversion through assessment and analysis of individual parameter. As the result, the optimal condition for enzymatic conversion of sugar cane bagasse into reducing sugar product are at pH = 5, 400C, and 48 h incubation in rate of enzyme (Cell/Xyl, AltFAE, XpoAE) and substrate (bagasse meal) is 3.1. From the above application, the mathematical model is found to describe equation of the bioconversion of bagasse into reducing sugars: = 206.946 + 29.954x1 + 5.501x2 + 7.323x3 + 2.288x2x3 – 7.011; and using flexible algorithm of nonlinear planning to identify optimal conditions of enzyme mixture of conversion into reducing sugars that the reaction reached max = 251.86 mg per gram bagasse with x1 = 1.215, x2 = 1.215, x3 = 1.215 or Cell/Xyl = 1 ml (100U), AltFAE = 0.5 ml (7.56U), XpoAE = 0.4 ml (10.8U) on the test range. Experimental verification has the same result in constant conditons and reached total reducing sugars of 260.2 mg per gram substrate.In this study, the unpretreated sugar cane bagasse was milled to a particle size of 0.5 – 1 mm and be used as material for bioconversion into fermentable sugars by using an enzyme cocktail acted synergistically. Experimental planning was used to optimize the enzyme conversion through assessment and analysis of individual parameter. As the result, the optimal condition for enzymatic conversion of sugar cane bagasse into reducing sugar product are at               pH = 5, 40 oC, and 48 h incubation in rate of enzyme (Cell/Xyl, AltFAE, XpoAE) and substrate (bagasse meal) is 3.1. From the above application, the mathematical model is found to describe equation of the bioconversion of bagasse into reducing sugars: = 206.946 + 29.954x1 + 5.501x2 + 7.323x3 + 2.288x2x3 – 7.011; and using flexible algorithm of nonlinear planning to identify optimal conditions of enzyme mixture of conversion into reducing sugars that the reaction reached max = 251.86 mg per gram bagasse with x1 = 1.215, x2 = 1.215, x3 = 1.215 or Cell/Xyl = 1 ml (100U), AltFAE = 0.5 ml (7.56U), XpoAE = 0.4 ml (10.8U) on the test range. Experimental verification has the same result in constant conditons and reached total reducing sugars of 260.2 mg per gram substrate

    Novel compound heterozygous mutation in the CNGA1 gene underlie autosomal recessive retinitis pigmentosa in a Chinese family

    Get PDF
    Synopsis Retinitis pigmentosa (RP) describes a group of inherited retinopathies that are characterized by the progressive degeneration of photoreceptor neurons, which causes night blindness, a reduction in the peripheral visual field and decreased visual acuity. More than 50 RP-related genes have been identified. In the present study, we analysed a Chinese family with autosomal recessive RP . We identified a compound heterozygous mutation, c.265delC and c.1537G>A, in CNGA1 using targeted next-generation sequencing (NGS) of RP-causing genes. The mutations were validated in the family members by Sanger sequencing. The mutations co-segregated with the RP phenotype and were absent from ethnically-matched control chromosomes. The mutant (mut) CNGA1 p.(G513R) protein caused by the mis-sense novel mutation c.1537G>A was expressed in vitro. The mut CNGA1 p.(G513R) protein was largely retained inside the cell rather than being targeted to the plasma membrane, suggesting the absence of cGMP-gated cation channels in the plasma membrane would be deleterious to rod photoreceptors, leading lead to RP

    Src Inhibition Blocks c-Myc Translation and Glucose Metabolism to Prevent the Development of Breast Cancer

    Get PDF
    Preventing breast cancer will require the development of targeted strategies that can effectively block disease progression. Tamoxifen and aromatase inhibitors are effective in addressing estrogen receptor–positive (ER+) breast cancer development, but estrogen receptor–negative (ER−) breast cancer remains an unmet challenge due to gaps in pathobiologic understanding. In this study, we used reverse-phase protein array to identify activation of Src kinase as an early signaling alteration in premalignant breast lesions of women who did not respond to tamoxifen, a widely used ER antagonist for hormonal therapy of breast cancer. Src kinase blockade with the small-molecule inhibitor saracatinib prevented the disorganized three-dimensional growth of ER− mammary epithelial cells in vitro and delayed the development of premalignant lesions and tumors in vivo in mouse models developing HER2+ and ER− mammary tumors, extending tumor-free and overall survival. Mechanistic investigations revealed that Src blockade reduced glucose metabolism as a result of an inhibition in ERK1/2–MNK1–eIF4E–mediated cap-dependent translation of c-Myc and transcription of the glucose transporter GLUT1, thereby limiting energy available for cell growth. Taken together, our results provide a sound rationale to target Src pathways in premalignant breast lesions to limit the development of breast cancers

    Genomewide association study of leprosy.

    Get PDF
    BACKGROUND: The narrow host range of Mycobacterium leprae and the fact that it is refractory to growth in culture has limited research on and the biologic understanding of leprosy. Host genetic factors are thought to influence susceptibility to infection as well as disease progression. METHODS: We performed a two-stage genomewide association study by genotyping 706 patients and 1225 controls using the Human610-Quad BeadChip (Illumina). We then tested three independent replication sets for an association between the presence of leprosy and 93 single-nucleotide polymorphisms (SNPs) that were most strongly associated with the disease in the genomewide association study. Together, these replication sets comprised 3254 patients and 5955 controls. We also carried out tests of heterogeneity of the associations (or lack thereof) between these 93 SNPs and disease, stratified according to clinical subtype (multibacillary vs. paucibacillary). RESULTS: We observed a significant association (P<1.00x10(-10)) between SNPs in the genes CCDC122, C13orf31, NOD2, TNFSF15, HLA-DR, and RIPK2 and a trend toward an association (P=5.10x10(-5)) with a SNP in LRRK2. The associations between the SNPs in C13orf31, LRRK2, NOD2, and RIPK2 and multibacillary leprosy were stronger than the associations between these SNPs and paucibacillary leprosy. CONCLUSIONS: Variants of genes in the NOD2-mediated signaling pathway (which regulates the innate immune response) are associated with susceptibility to infection with M. leprae
    • 

    corecore